Chiral de Rham Complex over Locally Complete Intersections

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chiral de Rham complex. II

To Dmitry Borisovich Fuchs, on his 60-th birthday This paper is a sequel to [MSV]. It consists of three parts. The first part is an expanded version of the last section of [MSV] 1. We give here certain construction of vertex algebras which includes in particular the ones appearing in loc. cit.

متن کامل

Chiral de Rham complex and the half-twisted sigma-model

On any Calabi-Yau manifold X one can define a certain sheaf of chiral N = 2 superconformal field theories, known as the chiral de Rham complex of X. It depends only on the complex structure of X, and its local structure is described by a simple free field theory. We show that the cohomology of this sheaf can be identified with the infinite-volume limit of the half-twisted sigma-model defined by...

متن کامل

A Conformal de Rham Complex

We introduce the notion of a conformal de Rham complex of a Riemannian manifold. This is a graded differential Banach algebra and it is invariant under quasiconformal maps, in particular the associated cohomology is a new quasiconformal invariant.

متن کامل

On a Twisted De Rham Complex

We show that, given a projective regular function f : X → C on a smooth quasiprojective variety, the corresponding cohomology groups of the twisted de Rham complex (Ω• X , d − df∧) and of the complex (Ω• X , df∧) have the same dimension. We generalize the result to de Rham complexes with coefficients in a mixed Hodge Module.

متن کامل

Ext-SYMMETRY OVER QUANTUM COMPLETE INTERSECTIONS

We show that symmetry in the vanishing of cohomology holds for graded modules over quantum complete intersections. Moreover, symmetry holds for all modules if the algebra is symmetric.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Moscow Mathematical Journal

سال: 2015

ISSN: 1609-3321,1609-4514

DOI: 10.17323/1609-4514-2015-15-2-353-372